Szerintem ezen a ponton fogja a legjóhiszeműbb olvasóm is kétségbe vonni, hogy én tényleg ilyenket álmodok, mint amikről itt beszámolok.
Pedig valóban így van – mondjuk azzal a pontosítással, hogy ez esetben talán nem szorosan vett álomról van szó, inkább az ébrenlét és az álom határán való lebegés sajátos termékéről.
Először viszont egy kis háttérinformációt kell megosztanom.
A Banach–Tarski paradoxon arról szól, hogy egy tömör gömböt fel lehet darabolni véges számú részre úgy, hogy aztán a részekből, pusztán csúsztatás és forgatás segítségével (tehát nagyítás és nyújtás nélkül!) két ugyanakkora gömböt lehet összerakni, mint amiből kiindultunk.
Vagy – ami ezzel egyenértékű – egy gömböt át lehet darabolni végés számú lépésben egy nagyobb gömbbé.
Ez nem is igazán paradoxon, mert nincs benne önellentmondás, csak a mi normál szemléletünkkel (a józan ésszel) ütközik.
Ami igazán paradox a dologban, az az, hogy Banach és Tarski annak idején tulajdonképpen azért alkották meg ezt a levezetést, hogy a bizonyítás során felhasznált kiválasztási axiómáról bemutassák, hogy téves, mert lám, ilyen abszurd következtetéshez vezet.
A kiválasztási axióma olyasmi a halmazelméletben, mint a párhuzamossági axióma a geometriában – arról biztos hallottatok már, tudjátok, Bolyai meg Lobacsevszkij. Szóval itt is kérdéses volt, hogy kell-e a kiválasztási axióma, illetve nem vezet-e ellentmondáshoz.
A megoldás itt is az lett, mint a geometriában – lehet ellentmondásmentes halmazelméletet csinálni a kiválasztási axiómával is, meg annak a tagadásával is.
Szóval annak idején ennek az axiómának a megcáfolására készült Banach és Tarski – a mostani mainstream szemlélet szerint viszont az axiómával nincs semmi baj, és igen, valóban úgy van, ahogy ők levezették – egy gömb átdarabolható két ugyanolyan gömbbe vagy egy nagyobba.
Eddig volt a háttér, és akkor most jön az álom-gondolat:
Arra jöttem rá, hogy igazából csak az a meglepő és bonyolult a Banach–Tarski levezetésben, hogy véges számú darabbal megoldható a dolog.
Ha ugyanis a gömböt megszámlálhatatlanul végtelen számú darabra (nevezetesen a pontjaira) osztjuk fel, akkor egyszerűen csak minden egyes darabot/pontot sugárirányban a gömb középpontjától kétszer távolabbra toljuk, mint ahol addig volt, és már kész is a kétszer akkora sugarú gömb. Ehhez pedig az egyes részeket nem nagyítottuk, csak elcsúsztattuk.